
Version 5.32
Revision A
May 2018

BD940/BD940-INS/BX940 and
BD99x

GNSS and Inertial Receiver

INTEGRATOR GUIDE

BD940 BD940-INS

BX940

BD990 BD992/BD992_INS BX992

Corporate Office

Trimble Inc.

Integrated Technologies

510 DeGuigne Drive

Sunnyvale, CA 94085

USA

www.trimble.com/gnss-inertial

Email: GNSSOEMSupport@trimble.com

Legal Notices

© 2006–2018, Trimble Inc. All rights reserved.

Trimble and the Globe & Triangle logo are trademarks of
Trimble Inc., registered in the United States and in other
countries. CMR+, EVEREST, Maxwell, and Zephyr are
trademarks of Trimble Inc.

Microsoft, Internet Explorer, Windows, and Windows Vista are
either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

All other trademarks are the property of their respective
owners.

Support for Galileo is developed under a license of the
European Union and the European Space Agency
(BD910/BD920/BD930/BD935/BD940/BD970/BD982/BX9
35/BX982).

Release Notice

This is the May 2018 release (Revision A) of the BD940/BD99x
Integrator Guide. It applies to version 5.32 of the receiver
firmware.

LIMITED WARRANTY TERMS AND CONDITIONS

Product Limited Warranty

Subject to the following terms and conditions, Trimble
Navigation Limited (“Trimble”) warrants that for a period of
one (1) year from date of purchase unless otherwise
specified, this Trimble product (the “Product”) will substantially
conform to Trimble's publicly available specifications for the
Product and that the hardware and any storage media
components of the Product will be substantially free from
defects in materials and workmanship.

Product Software

Product software, whether built into hardware circuitry as
firmware, provided as a standalone computer software
product, embedded in flash memory, or stored on magnetic
or other media, is licensed solely for use with or as an integral
part of the Product and is not sold. If accompanied by a
separate end user license agreement (“EULA”), use of any
such software will be subject to the terms of such end user
license agreement (including any differing limited warranty
terms, exclusions, and limitations), which shall control over the
terms and conditions set forth in this limited warranty.

Software Fixes

During the limited warranty period you will be entitled to
receive such Fixes to the Product software that Trimble
releases and makes commercially available and for which it
does not charge separately, subject to the procedures for
delivery to purchasers of Trimble products generally. If you
have purchased the Product from an authorized Trimble
dealer rather than from Trimble directly, Trimble may, at its
option, forward the software Fix to the Trimble dealer for final
distribution to you. Minor Updates, Major Upgrades, new
products, or substantially new software releases, as identified
by Trimble, are expressly excluded from this update process
and limited warranty. Receipt of software Fixes or other
enhancements shall not serve to extend the limited warranty
period.

For purposes of this warranty the following definitions shall
apply: (1) “Fix(es)” means an error correction or other update
created to fix a previous software version that does not
substantially conform to its Trimble specifications; (2) “Minor
Update” occurs when enhancements are made to current
features in a software program; and (3) “Major Upgrade”
occurs when significant new features are added to software,
or when a new product containing new features replaces the
further development of a current product line. Trimble
reserves the right to determine, in its sole discretion, what
constitutes a Fix, Minor Update, or Major Upgrade.

Warranty Remedies

If the Trimble Product fails during the warranty period for
reasons covered by this limited warranty and you notify
Trimble of such failure during the warranty period, Trimble will
repair OR replace the nonconforming Product with new,
equivalent to new, or reconditioned parts or Product, OR
refund the Product purchase price paid by you, at Trimble’s
option, upon your return of the Product in accordance with
Trimble's product return procedures then in effect.

How to Obtain Warranty Service

To obtain warranty service for the Product, please contact
your local Trimble authorized dealer. Alternatively, you may
contact Trimble to request warranty service by e-mailing your
request to GNSSOEMSupport@trimble.com. Please be
prepared to provide:

– your name, address, and telephone numbers

– proof of purchase

– a copy of this Trimble warranty

– a description of the nonconforming Product including the
model number

– an explanation of the problem

The customer service representative may need additional
information from you depending on the nature of the
problem.

Warranty Exclusions or Disclaimer

This Product limited warranty shall only apply in the event and
to the extent that (a) the Product is properly and correctly

BD940/BD99x Integrator Guide | 2

http://www.trimble.com/gnss-inertial
mailto:GNSSOEMSupport@trimble.com
mailto:trimble_support@trimble.com
mailto:GNSSOEMSupport@trimble.com

installed, configured, interfaced, maintained, stored, and
operated in accordance with Trimble's applicable operator's
manual and specifications, and; (b) the Product is not modified
or misused. This Product limited warranty shall not apply to,
and Trimble shall not be responsible for, defects or
performance problems resulting from (i) the combination or
utilization of the Product with hardware or software products,
information, data, systems, interfaces, or devices not made,
supplied, or specified by Trimble; (ii) the operation of the
Product under any specification other than, or in addition to,
Trimble's standard specifications for its products; (iii) the
unauthorized installation, modification, or use of the Product;
(iv) damage caused by: accident, lightning or other electrical
discharge, fresh or salt water immersion or spray (outside of
Product specifications); or exposure to environmental
conditions for which the Product is not intended; (v) normal
wear and tear on consumable parts (e.g., batteries); or (vi)
cosmetic damage. Trimble does not warrant or guarantee
the results obtained through the use of the Product, or that
software components will operate error free.

NOTICE REGARDING PRODUCTS EQUIPPED WITH
TECHNOLOGY CAPABLE OF TRACKING SATELLITE
SIGNALS FROM SATELLITE BASED AUGMENTATION
SYSTEMS (SBAS) (WAAS/EGNOS, AND MSAS), OMNISTAR,
GPS, MODERNIZED GPS OR GLONASS SATELLITES, OR
FROM IALA BEACON SOURCES: TRIMBLE IS NOT
RESPONSIBLE FOR THE OPERATION OR FAILURE OF
OPERATION OF ANY SATELLITE BASED POSITIONING SYSTEM
OR THE AVAILABILITY OF ANY SATELLITE BASED POSITIONING
SIGNALS.

THE FOREGOING LIMITED WARRANTY TERMS STATE
TRIMBLE’S ENTIRE LIABILITY, AND YOUR EXCLUSIVE
REMEDIES, RELATING TO THE TRIMBLE PRODUCT. EXCEPT
AS OTHERWISE EXPRESSLY PROVIDED HEREIN, THE
PRODUCT, AND ACCOMPANYING DOCUMENTATION AND
MATERIALS ARE PROVIDED “AS-IS” AND WITHOUT EXPRESS
OR IMPLIED WARRANTY OF ANY KIND, BY EITHER TRIMBLE
OR ANYONE WHO HAS BEEN INVOLVED IN ITS CREATION,
PRODUCTION, INSTALLATION, OR DISTRIBUTION,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT.
THE STATED EXPRESS WARRANTIES ARE IN LIEU OF ALL
OBLIGATIONS OR LIABILITIES ON THE PART OF TRIMBLE
ARISING OUT OF, OR IN CONNECTION WITH, ANY
PRODUCT. BECAUSE SOME STATES AND JURISDICTIONS
DO NOT ALLOW LIMITATIONS ON DURATION OR THE
EXCLUSION OF AN IMPLIED WARRANTY, THE ABOVE
LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

Limitation of Liability

TRIMBLE'S ENTIRE LIABILITY UNDER ANY PROVISION
HEREIN SHALL BE LIMITED TO THE AMOUNT PAID BY YOU
FOR THE PRODUCT. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, IN NO EVENT SHALL TRIMBLE OR ITS
SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGE WHATSOEVER

UNDER ANY CIRCUMSTANCE OR LEGAL THEORY RELATING
IN ANYWAY TO THE PRODUCTS, SOFTWARE AND
ACCOMPANYING DOCUMENTATION AND MATERIALS,
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
DATA, OR ANY OTHER PECUNIARY LOSS), REGARDLESS OF
WHETHER TRIMBLE HAS BEEN ADVISED OF THE
POSSIBILITY OF ANY SUCH LOSS AND REGARDLESS OF THE
COURSE OF DEALING WHICH DEVELOPS OR HAS
DEVELOPED BETWEEN YOU AND TRIMBLE. BECAUSE SOME
STATES AND JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE
LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

PLEASE NOTE: THE ABOVE TRIMBLE LIMITED WARRANTY
PROVISIONS WILL NOT APPLY TO PRODUCTS
PURCHASED IN THOSE JURISDICTIONS (E.G., MEMBER
STATES OF THE EUROPEAN ECONOMIC AREA) IN WHICH
PRODUCT WARRANTIES ARE THE RESPONSIBILITY OF
THE LOCAL TRIMBLE AUTHORIZED DEALER FROM
WHOM THE PRODUCTS ARE ACQUIRED. IN SUCH A
CASE, PLEASE CONTACT YOUR LOCAL TRIMBLE
AUTHORIZED DEALER FOR APPLICABLE WARRANTY
INFORMATION.

Official Language

THE OFFICIAL LANGUAGE OF THESE TERMS AND
CONDITIONS IS ENGLISH. IN THE EVENT OF A CONFLICT
BETWEEN ENGLISH AND OTHER LANGUAGE VERSIONS,
THE ENGLISH LANGUAGE SHALL CONTROL.

COCOM limits

This notice applies to the BD910, BD920, BD920-W, BD920-
W3G, BD930, BD930-UHF, BD935-INS, BD960, BD970,
BD982, BX960, BX960-2, and BX982 receivers.

The U.S. Department of Commerce requires that all
exportable GPS products contain performance limitations so
that they cannot be used in a manner that could threaten the
security of the United States. The following limitations are
implemented on this product:
– Immediate access to satellite measurements and
navigation results is disabled when the receiver velocity is
computed to be greater than 1,000 knots, or its altitude is
computed to be above 18,000 meters. The receiver GPS
subsystem resets until the COCOM situation clears. As a
result, all logging and stream configurations stop until the
GPS subsystem is cleared.

Restriction of Use of Certain Hazardous Substances in
Electrical and Electronic Equipment (RoHS)

Trimble products in this guide comply in all material respects
with DIRECTIVE 2002/95/EC OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on
the restriction of the use of certain hazardous substances in
electrical and electronic equipment (RoHS Directive) and
Amendment 2005/618/EC filed under C(2005) 3143, with

BD940/BD99x Integrator Guide | 3

exemptions for lead in solder pursuant to Paragraph 7 of the
Annex to the RoHS Directive applied.

Waste Electrical and Electronic Equipment (WEEE)

For product recycling instructions and more
information, please go to
www.trimble.com/Corporate/Environmental_
Compliance.aspx.

Recycling in Europe: To recycle Trimble WEEE (Waste
Electrical and Electronic Equipment, products that run on
electrical power.), Call +31 497 53 24 30, and ask for the
“WEEE Associate”. Or, mail a request for recycling instructions
to:

Trimble Europe BV

c/o Menlo Worldwide Logistics

Meerheide 45

5521 DZ Eersel, NL

BD940/BD99x Integrator Guide | 4

http://www.trimble.com/Corporate/Environmental_Compliance.aspx
http://www.trimble.com/Corporate/Environmental_Compliance.aspx

Contents
Contents 5

1 Power Requirements and Circuitry 7
BD940/BD940-INS 8

BD990/BD992/BD992-INS 10

Power switch and reset 10

Power switch 10

Reset switch 11

BD940 evaluation board 11

Power input circuit 11

BD940-INS evaluation board 12

Power supply circuit 12

BD990/BD992/BD992-INS evaluation board 13

Power supply circuit 13

Antenna power output 14

Power output specification 14

Short-circuit protection 14

2 Ethernet 15
Isolation transformer selection 15

Ethernet design using RJ-45 with integrated magnetics 16

RJ-45 drawing 16

JX10-0006NL schematic 16

Electrical characteristics 17

Ethernet design using discrete components 17

Ethernet schematic 18

Ethernet routing 19

BD940-INS/BD99X Ethernet design considerations 19

Evaluation board Ethernet schematics 20

BD940 evaluation board 20

BD940-INS evaluation board 21

BD99X evaluation board 22

3 Serial Port 24
BD940 evaluation board 24

BD940-INS evaluation board 25

BD99x evaluation board 26

BD940/BD99x Integrator Guide | 5

Contents

4 USB 28
USB OTG reference design 28

USB host-only reference design 29

USB device-only reference design 30

BD940 evaluation board 31

BD940-INS evaluation board 32

BD99x evaluation board 32

5 CAN 33
BD940 33

BD940-INS evaluation board CAN port 34

BD99X evaluation board CAN port 34

6 LED Control Lines 36

7 Event Input for the BD9xx Using the Evaluation Board 37
Event 38

Event schematics of the BD9xx evaluation PCB 38

PPS output and event inputs BD940 39

PPS output and event inputs BD40-INS 40

PPS output and event inputs BD990/BD992/BD992-INS 41

Event (0) 1PPS Input example 42

Hardware to generate and measure the input signal 42

Issues of conditioning the input voltage signal 42

Oscilloscope Signal 1 and Signal 2 43

Enabling Event (0) 1 in the receiver firmware using the web interface 43

Logging Event In using the RT17/RT27 protocol 44

Verifying the Event In data using the RT17/RT27 protocol 45

8 1PPS and ASCII Time Tag 47
ASCII time tag 48

9 GSOF Message Parsing and Decoding 49
Source code description 49

Header, defines, types, and routines 50

BD940/BD99x Integrator Guide | 6

Power Requirements and
Circuitry
 n BD940/BD940-INS

 n BD990/BD992/BD992-INS

 n Power switch and reset

 n BD940 evaluation board

 n BD940-INS evaluation board

 n BD990/BD992/BD992-INS evaluation board

 n Antenna power output

1

BD940/BD99x Integrator Guide | 7

1 Power Requirements and Circuitry

BD940/BD940-INS
Power input

The unit, excluding the antenna operates at 3.3 V +5%/-3%. The 3.3 V should be able to
supply 1.8 A of worst-case surge current. Full-load power consumption including antenna
is 2.7 W.

Over-voltage protection

The absolute maximum voltage is 3.6 V.

Under-voltage protection

The absolute minimum voltage is 3.2 V below nominal.

Reverse voltage protection

The unit is protected down to -3.6 V.

Power On reset (PORESET)

There is a PORESET controller that monitors the power rails. The PORESET signal will be low
if Maxwell Core, CPU Core, and CPU 1.8 V are not correct. The signal will stay low for 200
mSec after all of these rails are good. If any of the rails drop, PORESET will be toggled.
PORESET is connected to a hardware reset on the CPU.

Antenna power out

Power output specification

The antenna DC power is supplied directly from Pin 3 on the multi-pin Interface Connector
J100. The antenna output is rated to 10 V and can source a maximum of 150 mAmps.

Short-circuit protection

The unit does not have any over-current/short circuit protection related to the Antenna
bias. Short circuits may cause damage to the Antenna port bias filtering components if the
sourcing supply is not current limited to less than 150 mAmps.

Power consumption

This section provides details on power consumption for the BD940 module when
configured to different operating modes. The testing environment is considered as ideal
and therefore these numbers are for reference purposes only.

BD940/BD99x Integrator Guide | 8

1 Power Requirements and Circuitry

NOTE – It is important to consider the following caveats when using these numbers for integrating
the BD940 into a larger system:

 1. Testing was done by placing the module on the Trimble BD940 evaluation board.

 2. Voltage Input – 12 V DC to BD940 evaluation board.

 3. Firmware Release – v5.33.

 4. Antenna – Zephyr II Geo with power LNA–

 5. Ethernet – Enabled with active embedded web interface.

 6. RS-232 – Port speed 230,400 bps.

 7. Output Protocol – NMEA @ 20 Hz (GGA, GST, and GSV).

 8. RTK Navigation.

 9. sCMRx Over Ethernet.

 10. Ambient Temp: 25 °C.

Legend Test Profile

 l Test 1 L1 L2 RTK @ 20 Hz over RS-232 = 2.32 W Min and 2.40 W Max

 l Test 2 L1 L2 G1 G2 RTK @ 20 Hz over RS-232 = 2.36 W and 2.47 W Max

 l Test 3 L1 L2 G1 G2 SBAS RTK @ 20 Hz over RS-232 = 2.36 W Min and 2.47 W Max

 l Test 4 L1 L2 G1 G2 SBAS L5 RTK @ 20 Hz over RS-232 = 2.55 W Min and 2.73 W Max

 l Test 5 L1 L2 G1 G2 SBAS L5 Galileo RTK @ 20 Hz over RS-232 = 2.60 W Min and 2.76 W
Max

 l Test 6 L1 L2 G1 G2 SBAS L5 Galileo RTX over L-Band 20 Hz over RS-232 = 2.77 W Min
and 2.95 W Max

 l Test 7 L1 L2 G1 G2 SBAS L5 Galileo B1 B2 RTK @ 20 Hz over RS-232 = 2.65 W Min and
3.07 W Max

BD940/BD99x Integrator Guide | 9

1 Power Requirements and Circuitry

BD990/BD992/BD992-INS
Power supply

The unit operates with a nominal input of 3.3 V +5%/-3%. The external 3.3 V supply should
be able to supply 1.8 A of worst-case surge current. Worst case full load power
consumption including antenna is 5.0 W. (Note: Worst case was tested with all features,
including RF bands, LEDs, enabled, at +85 °C). There are multiple power rails in the system.
Voltage rails 1.2 V, 1 V, 1.8 V, 2.35 V, 5.7 V, or 7.6 V (antenna outputs) are provides by
switching supplies. 3.1 V, 3.0 V, and 1.95 V use LDOs to achieve low noise voltage rails.

Power protection

The 3.3 V input is monitored by an LTC2912 for over and under voltage conditions.
(Basically a window comparator). If the voltage exceeds 3.64 V or is under 3.01 V the IC
turns off the gate of a MOSET to disconnect the input voltage to the system. Limited
protection above 3.64 V is offered by a varistor which has a clamping voltage of 5.5 V.

Antenna power out

Each antenna connector can supply DC power independently. Each output is supplied by a
dedicated boost regulator. The primary antenna regulator can switch voltage between 5.7
V to 7.6 V by using a GPIO to change the feedback and can source a maximum of 150
mAmps. Switching is done to select narrow vs wideband filtering for MSS jam-immunity in
capable Trimble antennas. The output antenna features a constant 5.7 V output. Each
antenna has a PTC with a hold current of 200 mA which limits the output current and
provides short circuit protection.

Power switch and reset

Power switch
The integrator may choose to power on or power off the unit. If a 3.3 V level signal is
applied to pin 3, Power_Off pin, the unit will disconnect VCC. The system integrator must
ensure that other TTL level pins remain unpowered when Power_Off is asserted. Powering
TTL-level pins while the unit is powered off will cause excessive leakage current to be sinked
by the unit.

The integrator may choose to always have the unit powered on. This is accomplished by
leaving the Power_Off pin floating or grounded.

BD940/BD99x Integrator Guide | 10

1 Power Requirements and Circuitry

Reset switch
Driving Reset_IN_L, Pin 12, low will cause the unit to reset. The unit will remain reset at least
140 mS after the Reset_In_L is deasserted. The unit remains powered while in reset.

BD940 evaluation board

Power input circuit

BD940/BD99x Integrator Guide | 11

1 Power Requirements and Circuitry

BD940-INS evaluation board

Power supply circuit

BD940/BD99x Integrator Guide | 12

1 Power Requirements and Circuitry

BD990/BD992/BD992-INS evaluation board

Power supply circuit

BD940/BD99x Integrator Guide | 13

1 Power Requirements and Circuitry

Antenna power output

Power output specification
The antenna supplies 100 mA at 5 V.

Short-circuit protection
The unit has an over-current / short circuit protection. Short circuits may cause the unit to
reset.

BD940/BD99x Integrator Guide | 14

Ethernet
The receiver contains the Ethernet MAC and PHY, but requires external magnetics. The
PHY layer is based on the Micrel KSZ8041NLI it is set to default to 100 Mbps, full duplex with
auto-negotiation enabled.

Since the Ethernet functionality will typically increase the receiver power consumption by
approximately 10%, the receiver shuts down the Ethernet controller if no Ethernet devices
are connected within two minutes.

Isolation transformer selection

Parameters Value Test condition

Turns Ratio 1CT:1CT

Open-circuit inductance (min.) 350 uH 100 mV, 100 kHz, 8 mA

Leakage inductance (max.) 0.4 uH 1 MHz (min.)

DC resistance (max.) 0.9 Ohms

Insertion loss (max.) 1.0 dB 0 MHz to 65 MHz

HiPot (min. 1500 Vrms

2

BD940/BD99x Integrator Guide | 15

2 Ethernet

Ethernet design using RJ-45 with integrated magnetics
The Ethernet interface can be implemented with a single part by using an integrated part
like TE Connectivity’s 6605767-1 which has magnetics, common mode choke, termination
and transient voltage suppression fully integrated in one part.

RJ-45 drawing

JX10-0006NL schematic

BD940/BD99x Integrator Guide | 16

2 Ethernet

Electrical characteristics
Parameter Specifications

Insertion loss 100 kHz 1-125 MHz

-1.2 dB max. -0.2–0.002*f^1.4 db max.

Return loss
(Z out = 100 Ohm +/- 15%)

0.1–30 MHz:

30–60 MHz:

60–80 MHz:

-16 dB min.

-10+20*LOG10
(f/60 MHz dB min.)

-10 dB min.

Inductance (OCL)
(Media side -40°C + 85°C)

350 uH min. Measured at 100 kHz, 100 mVRMS and
with 8 mA DC bias)

Crosstalk, adjacent channels 1 MHz 10-100 MHz

-50 dB min. -50+17*LOG10(f/10) dB min.

Common mode rejection
radio

2 MHz 30–200 MHz

-50 dB min. -15+20*LOG10 (f/200) dB min.

DC resistance
1/2 winding

0.6 Ohms max.

DC resistance
imbalance

+/- 0.065 Ohms max. (center tap symmetry)

input - output
isolation

1500 Vrms min. at 60 seconds

Ethernet design using discrete components
For maximum flexibility, a system integrator may choose to implement the Ethernet using
discrete parts. The design below shows an example of such a design. It includes the
Ethernet magnetics, termination of unused lines as well as surge protection. The
magnetics used is a Pulse Engineering HX1188. Surge protection is provided by a Semtech
SLVU2.8-4. In order to meet electrical isolation requirements, it is recommended to use
capacitors with a greater than 2 kV breakdown voltage.

BD940/BD99x Integrator Guide | 17

2 Ethernet

Ethernet schematic

Part Reference Value

C4–C6 1000pF 2 kV

C3 10 uF X5R 6.3 V

D1 SEMTECH SLVU2.8–4

J1 RJ45 Conn

L1, L2 Ferrite Bead

R1–R11 49.9 0402 1%

T1 Pulse engineering HX1188

BD940/BD99x Integrator Guide | 18

2 Ethernet

Ethernet routing
The distance from the BD940 connector, the Ethernet connector and the magnetics
should be less than 2 inches. The distance from the RJ-45 and the magnetics should be
minimized to prevent conducted emissions issues. In this design, the chassis ground and
signal ground are separated to improve radiated emissions. The integrator may choose to
combine the ground. The application note from the IC vendor is provided below for more
detailed routing guidelines.

BD940-INS/BD99X Ethernet design considerations
The BD940-INS and BD9XX board series have their own magnetics, therefore, the Ethernet
interface can be implemented using only a RJ-45 connector, and termination discretes. See
design example below:

BD940/BD99x Integrator Guide | 19

2 Ethernet

Optional surge protection is provided by a Semtech SLVU2.8-4. To meet electrical isolation
requirements, Trimble recommends using capacitors with a greater than 2 kV breakdown
voltage.

Evaluation board Ethernet schematics

BD940 evaluation board
The evaluation board has the necessary magnetics to run the Ethernet interface. Below
are the schematics of the Ethernet implementation on the BD940 evaluation board:

BD940/BD99x Integrator Guide | 20

2 Ethernet

BD940-INS evaluation board
The BD940-INS has its own internal magnetics. The evaluation board also has Ethernet
magnetics and in order to have both in series, the choke is left flowing.

BD940/BD99x Integrator Guide | 21

2 Ethernet

BD99X evaluation board
The BD99X series of boards has its own internal magnetics. The following details the
implementation of the evaluation board Ethernet circuitry;

BD940/BD99x Integrator Guide | 22

2 Ethernet

Ethernet magnetics

BD940/BD99x Integrator Guide | 23

Serial Port

BD940 evaluation board
Item Description

Port 1
(no flow
control)

COM 1 is already at RS-232 level and already has 8 kV contact
discharge/15 kV air gap discharge ESD Protection. This is labeled Port 1
on the I/O board.

Port 2
(with flow
control)

COM 2 is at 0-3.3 V TTL. This port has RTS/CTS to support hardware flow
control. If the integrator needs this port to be at RS-232 level, a proper
transceiver powered by the same 3.3 V that powers the receiver needs
to be added.

For development using the I/O board, this COM port is already
connected to an RS-232 transceiver. This is labeled Port 2 on the I/O
board.

3

BD940/BD99x Integrator Guide | 24

3 Serial Port

BD940-INS evaluation board
Item Description

Port 1
(no flow
control)

COM 1 is already at RS-232 level and already has 8 kV contact
discharge/15 kV air gap discharge ESD Protection. This is labeled Port 1
on the I/O board.

Port 3
(no flow
control)

COM 3 is already at RS-232 level and already has 8 kV contact
discharge/15 kV air gap discharge ESD Protection. This is labeled Port 3
on the I/O board.

Port 4
(with flow
control)

COM 4 is at 0-3.3 V TTL. This port has RTS/CTS to support hardware flow
control. If the integrator needs this port to be at RS-232 level, a proper
transceiver powered by the same 3.3 V that powers the receiver needs
to be added.

For development using the I/O board, this COM port is already
connected to an RS-232 transceiver. This is labeled Port 4 on the I/O
board.

BD940/BD99x Integrator Guide | 25

3 Serial Port

BD99x evaluation board
Item Description

Port 1
(no flow
control)

COM 1 is already at RS-232 level and already has 8 kV contact
discharge/15 kV air gap discharge ESD Protection. This is labeled Port 1
on the I/O board.

Port 2
(with flow
control)

COM 2 is at 0-3.3 V TTL. This port has RTS/CTS to support hardware flow
control. If the integrator needs this port to be at RS-232 level, a proper
transceiver powered by the same 3.3 V that powers the receiver needs
to be added.

For development using the I/O board, this COM port is already
connected to an RS-232 transceiver. This is labeled Port 2 on the I/O
board.

Port 3
(with flow
control)

COM 3 is at 0-3.3 V TTL. This port has RTS/CTS to support hardware flow
control. If the integrator needs this port to be at RS-232 level, a proper
transceiver powered by the same 3.3 V that powers the receiver needs
to be added.

For development using the I/O board, this COM port is already
connected to an RS-232 transceiver. This is labeled Port 3 on the I/O
board.

BD940/BD99x Integrator Guide | 26

3 Serial Port

Item Description

BD940/BD99x Integrator Guide | 27

USB
The CPU of the receiver has an integrated PHY that supports both USB 2.0 Device and
Host configuration at low speed, full speed, and high speed. In Host mode, the receiver
supplies 5 V to a USB device, such as a memory stick. In Device mode, the receiver behaves
like an external storage device to a computer.

USB OTG reference design
To be OTG-compliant, the connector must be MICRO AB. An OTG-compliant cable has A
and B ends. When the B-side of the cable is inserted, the ID pin is not connected (floating)
and the receiver enters Device mode through a pull-up resistor. The A-side of the cable
connects the ID pin to ground, which enables Host mode on the receiver.

To reduce EMI, place a USB 2.0 compliant common mode choke on the data lines. To
ensure best EMI performance, locate the choke near the USB MICRO AB connector.
Trimble recommends that you use an L-C-L type EMI filter for the output power.

4

BD940/BD99x Integrator Guide | 28

4 USB

For product robustness and protection, place ESD protection diodes on both the USB_
VBUS and USB_OTG_ID lines. The receiver has internal high-speed ESD protection on the
USB data lines.

To ensure best USB high-speed performance, carefully consider PCB routing and
placement practices:

 l Place components so the trace length is minimized.

 l Do not have stubs on data lines more than 0.200".

 l Route data lines differentially but as parallel as possible.

 l Data lines must be controlled to 90 Ohms differential impedance, and 45 Ohms single-
ended impedance.

 l Route over continuous reference plane (either ground or power).

For more detailed information, refer to the Intel High Speed USB Platform Design Guidelines.

USB host-only reference design
For USB host-only support, a type-A connector is required. Since the receiver dos not
support dynamic role switching, the ID pin should be grounded on the receiver. In Host
mode, the receiver supplies nominal 5 V output at 500 mA to the USB device.

BD940/BD99x Integrator Guide | 29

4 USB

USB device-only reference design
For device-only operation, the USB_OTG_ID pin is left floating. For reference, the receiver
has an internal 10 K Ohm pull-up to 3.3 V. In this mode, the USB_DEVICE_VBUS is used only
by receiver to detect if host power is connected.

BD940/BD99x Integrator Guide | 30

4 USB

BD940 evaluation board
The BD940 evaluation board has two Serial – USB ports. The ports are named COM3 and
COM4. The USB connectors are Type-B connectors. Below is the schematic for the two
Serial – USB communication ports.

The BD940 evaluation board is also equipped to handle both USB Device and Host. There
are two USB ports available on the evaluation board that provide this functionality. Below
is the schematic that details the connections involved with both USB modes.

BD940/BD99x Integrator Guide | 31

4 USB

BD940-INS evaluation board
The following is the schematic for the USB Type-B (device only) connector on the BD940-
INS evaluation board:

BD99x evaluation board
The BD99X evaluation board has one USB device port. The following is the schematic for
this communication port:

BD940/BD99x Integrator Guide | 32

CAN
BD940
The BD940 module does not have the capability for CAN. To output CAN messages, the
BD940 needs an external CAN transceiver.

The following figure shows a typical implementation with a 3.3 V CAN transceiver. It also
shows a common mode choke as well as ESD protection. A 5 V CAN Transceiver can be
used if proper level translation is added.

5

BD940/BD99x Integrator Guide | 33

5 CAN

BD940-INS evaluation board CAN port
For CAN development using the BD940-INS evaluation board, the provided CAN port is
already connected to a CAN transceiver. This port is marked as “CAN” on the board. The
connector used is a standard 9-pin DB9 connector.

BD99X evaluation board CAN port
Com 4 is at 0-3.3 V TTL and is multiplexed with CAN. The receive line is also multiplexed with
Event 1. The integrator must have a receiver configured to use the CAN port in order to
use this port as a serial port. The functionality cannot be multiplexed in real time.

For development using the I/O board, this com port is already connected to a CAN
transceiver. This is labeled CAN on the I/O board. J5, labeled ‘CAN’ and ‘SERIAL’, must be set
to CAN. There shouldn't be anything connected to TP6, labeled Event 1.

BD940/BD99x Integrator Guide | 34

5 CAN

BD940/BD99x Integrator Guide | 35

LED Control Lines
Item Description

Driving LEDs The outputs are 3.3 V TTL level with a maximum source/sink current
of 4 mA. An external series resistor must be used to limit the current.
The value of the series resistor in Ohms is determined by:

(3.3-Vf)/(If) > Rs > (3.3 V - Vf)/(.004)

Rs = Series resistor

If = LED forward current, max typical If of the LED should be less than
3mA

Vf = LED forward voltage, max typical Vf of the LED should be less
than 2.7V

Most LEDs can be driven directly as shown in the circuit below:

LEDs that do not meet If and Vf specification must be driven with a
buffer to ensure proper voltage level and source/sink current.

Power LED This active-high line indicates that the unit is powered on.

Satellite LED This active-high line indicates that the unit has acquired satellites.

A rapid flash indicates that the unit has less than 5 satellites acquired
while a slow flash indicates greater than 5 satellites acquired. This
line will stay on if the unit is in monitor mode.

RTK Correction A slow flash indicates that the unit is receiving corrections. This will
also flash when the unit is in monitor mode.

6

BD940/BD99x Integrator Guide | 36

Event Input for the BD9xx Using
the Evaluation Board
This topic describes how to condition and analyze event input signals when using the
BD9xx evaluation boards. This knowledge also applies to the customers’ implementation of
event inputs on their carrier board for the BD9xx.

Useful links:
l For information about the web interface, refer to the Web Interface section of the

BD9xx User Guide.

l For Event 1 and Event 2 information, see page 144 in Revision E of the User Guide.

7

BD940/BD99x Integrator Guide | 37

7 Event Input for the BD9xx Using the Evaluation Board

Event
Item Description

Event 1 Pin 8 is dedicated as an Event_In pin.

This is a TTL only input; it is not buffered or protected for any inputs
outside of 0 V to 3.3 V. It does have ESD protection. If the system
requires event to handle a voltage outside this range, the system
integrator must condition the signal prior to connecting to the unit.

Event 2 Event 2 is multiplexed with COM3_RX and CAN_RX. The default setting
is to have this line set to COM3_RX. The Event 2 must be enabled in
order to use Event2.

When using the 63494 Development interface board, the user must
not connect anything to Port 3 and the CAN port when using Event 2.
The Com3 level selection switch is ignored when Event 2 is selected.

This is a TTL only input; it is not buffered or protected for any inputs
outside of 0 V to 3.3 V. It does have ESD protection. If the system
requires event to handle a voltage outside this range, the system
integrator must condition the signal prior to connecting to the unit.

Event schematics of the BD9xx evaluation PCB
Trimble recommends adding a Schmitt trigger and ESD protection to the Event_In pin. This
prevents any "ringing" on the input from causing multiple and incorrect events to be
recognized.

BD940/BD99x Integrator Guide | 38

7 Event Input for the BD9xx Using the Evaluation Board

PPS output and event inputs BD940

BD940/BD99x Integrator Guide | 39

7 Event Input for the BD9xx Using the Evaluation Board

PPS output and event inputs BD40-INS

BD940/BD99x Integrator Guide | 40

7 Event Input for the BD9xx Using the Evaluation Board

PPS output and event inputs BD990/BD992/BD992-INS

BD940/BD99x Integrator Guide | 41

7 Event Input for the BD9xx Using the Evaluation Board

Event (0) 1PPS Input example
This section illustrates an example hardware setup, inputting a 1 PPS signal from an
external source.

The specifications of the input signal are:

 l Frequency: 1 Hz

 l Amplitude: 2.5 V DC P-P (Peak to Peak) (within the specified 3.3 maximum voltage)

 l DC offset: 1.5 V DC

Hardware to generate and measure the input signal

Issues of conditioning the input voltage signal
The following examples illustrate the principle of conditioning the input voltage signal:

 l In this example, the oscilloscope is measuring the signal in two places. When probing
the signal (Signal 1), it measures an output voltage overshoot over 4 V DC, then settles
to about 2.5 V DC. The "overshoot" is above the maximum allowable input voltage of 3.3
V DC. To condition the input voltage on the I/O board, add two 82 Ohm resisters in
parallel, which gives about 41 Ohms of resistance to correct for the overshoot. The
input voltage to the Event (0) 1 after the 41 Ohms of resistance is measured at Signal 2.

 l In this example, the measured signal at Signal 2 may have a 'ringing' characteristic after
the rising edge. This 'ringing' may trigger 2 Event Inputs into the system, causing 2

BD940/BD99x Integrator Guide | 42

7 Event Input for the BD9xx Using the Evaluation Board

Event Inputs to be triggered in the firmware and logged. This signal characteristic is
undesirable. See Verifying the Event In Data using the RT17/RT27 Protocol.

Oscilloscope Signal 1 and Signal 2
Signal 1: Vertical scale is 2-volt increments

Signal 2: Vertical scale is 1-volt increments

Enabling Event (0) 1 in the receiver firmware using the web interface
In the General page of the Receiver Configuration menu, enable the Event inputs:

BD940/BD99x Integrator Guide | 43

7 Event Input for the BD9xx Using the Evaluation Board

Logging Event In using the RT17/RT27 protocol
In the I/O Configuration page, select how you want to collect the data. The example below
shows COM1 with the defaults of 38400, Parity None (N). The RT17/27 Log is also enabled:

BD940/BD99x Integrator Guide | 44

7 Event Input for the BD9xx Using the Evaluation Board

Verifying the Event In data using the RT17/RT27 protocol
Data events 1-second interval:

BD940/BD99x Integrator Guide | 45

7 Event Input for the BD9xx Using the Evaluation Board

In the case where two events are recorded within 1-second interval:

 l Record Type: 2 (2: Event Mark)

 l Page Number 1 of 1

 l Reply Number: 18

 l Record Interpretation Flags: 00000000

 l Decoding message:

 l Event Source: 7

 l Event Port: 1 (1: 1st Event Port or Serial Port 1)

 l Event Number: 4

 l GPS time: 442516134.467520 (ms)

In the case where there is too much ringing:

 l Record Type: 2 (2: Event Mark)

 l Page Number 1 of 1

 l Reply Number: 19

 l Record Interpretation Flags: 00000000

 l Decoding message:

 l Event Source: 7

 l Event Port: 1 (1: 1st Event Port or Serial Port 1)

 l Event Number: 5

 l GPS time: 442516136.342442 (ms)

 l Delta GPSTime between Events: 1.874921978 (ms)

BD940/BD99x Integrator Guide | 46

1PPS and ASCII Time Tag
The receiver can output a 1 pulse-per-second (1PPS) time strobe and an associated time
tag message. The time tags are output on a user-selected port.

The leading edge of the pulse coincides with the beginning of each UTC second. The pulse
is driven between nominal levels of 0.0 V and 3.3 V (see below). The leading edge is positive
(rising from 0 V to 3.3 V). The receiver PPS out is a 3.3 V TTL level with a maximum
source/sink current of 4 mA. If the system requires a voltage level or current source/sink
level beyond these levels, you must have an external buffer. This line has ESD protection.

The illustration below shows the time tag relation to 1PPS wave form:

The pulse is about 8 microseconds wide, with rise and fall times of about 100 ns. Resolution
is approximately 40 ns, where the 40 ns resolution means that the PPS shifting mechanism
in the receiver can align the PPS to UTC/GPS time only within +/- 20 ns, but the following
external factor limits accuracy to approximately ±1 microsecond:

 l Antenna cable length

Each meter of cable adds a delay of about 2 ns to satellite signals, and a corresponding
delay in the 1PPS pulse.

8

BD940/BD99x Integrator Guide | 47

8 1PPS and ASCII Time Tag

ASCII time tag
Each time tag is output about 0.5 second before the corresponding pulse. Time tags are in
ASCII format on a user-selected serial port. The format of a time tag is:

UTC yy.mm.dd hh:mm:ss ab

Where:

 l UTC is fixed text.

 l yy.mm.dd is the year, month, and date.

 l hh:mm:ss is the hour (on a 24-hour clock), minute, and second. The time is in UTC, not
GPS.

 l a is an integer number representing the position-fix type:

1 = time solution only

2 = 1D position and time solution

3 = currently unused

4 = 2D position and time solution

5 = 3D position and time solution

 l b is the number of GNSS satellites being tracked. If the receiver is tracking 9 or more
satellites, b will always be displayed as 9.

 l Each time tag is terminated by a carriage return, line feed sequence. A typical printout
looks like:

UTC 02.12.21 20:21:16 56

UTC 02.12.21 20:21:17 56

UTC 02.12.21 20:21:18 56

NOTE – If the receiver is not tracking satellites, the time tag is based on the receiver clock. In this
case, a and b are represented by “??”. The time readings from the receiver clock are less accurate
than time readings determined from the satellite signals.

BD940/BD99x Integrator Guide | 48

GSOF Message Parsing and
Decoding
This topic describes a simple General Serial Output Format (GSOF) message protocol
parser. The console utility is written in “C” and compiled in a Linux environment using the
GNU Compiler Collection (GCC) version 4.6.3 20120306. The Code has been compiled and
validated using Fedora Version 16 (64 Bit) running on VMware Workstation (Virtual
Machine) version 9.0.1 build-894247. The source is being provided to Trimble customers
who wish to decode and use the GSOF Protocol.

Useful links:

 l Refer to the Chapter 9, Output Messages, in the appropriate Trimble BD9xx GNSS
receiver manual

 l C source file

Source code description
The data is assumed to be the raw GSOF output from a Trimble receiver. That is, it consists
of Trimcomm packets (02..03) of type 0x40 in which are embedded GSOF subtype records.
The program accepts such data on standard input (either live as part of a '|'-pipeline, or
from a file via '<'-redirection. It synchronizes with the individual Trimcomm packets and
extracts the contents. When a complete set of GSOF-0x40 packets is collected, the total
contents is parsed and listed. For some GSOF subtypes there is a full decoder below and
the contents are listed, item by item. Other packets are listed just as Hex bytes. You can
write additional routines to the decoder if required, using the routines as models to
implement for additional GSOF subtypes.

The program starts with main which collects Trimcomm packets. It then moves to
postGsofData() which collects the GSOF data from multiple packets and decides when a
complete set has been received. Then it goes to processGsofData() which steps through
the collected data parsing the individual GSOF subtype records. If the GSOF subtype is one
of the special ones where it has a decoder, that decoder is called, otherwise the program

9

BD940/BD99x Integrator Guide | 49

9 GSOF Message Parsing and Decoding

just dumps the Hex bytes of the record. The program runs until the Stdinput indicates end
of file (EOF) [see gc()] or the user stops it with a “Ctrl “C” action.

NOTE – This program is not designed to handle corrupted data. It does not contain sophisticated
logic to handle corrupted data packets. This source is being provided “As Is”. The program was
written to enable viewing the contents of well-formed GSOF data, not to debug the overall
formatting. There should be some resistance to additional data such as NMEA being mixed into the
GSOF stream, as this has not been validated.

Header, defines, types, and routines
This section contains header, defines, types, and routines parsers for individual GSOF
records:

Header and defines Earth-Centered, Earth-Fixed
Position

SV Detailed Info (All Satellite
Systems)

Types Earth-Centered, Earth-Fixed
Delta Position

SV Detailed Info

Global variables Tangent Plane Delta Attitude Info

Function: GetU32 Velocity Data L-Band Status Info

Function: GetFloat Current UTC Time Function: Process GSOF
Data

Function:GetDouble PDOP Info Function: Post GSOF Data

Function: GetU16 SV Brief Info Function: Get Character (gc)

Position Time SV Brief Info (All Satellite Systems) Function: Main

Latitude, Longitude and
Height

Header and defines

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define PI (3.14159265358979)

BD940/BD99x Integrator Guide | 50

9 GSOF Message Parsing and Decoding

Types

typedef unsigned long U32 ;

typedef unsigned short U16 ;

typedef signed short S16 ;

typedef unsigned char U8 ;

Global variables

/* A few global variables needed for collecting full GSOF packets from multiple Trimcomm
packets. */

unsigned char gsofData[2048] ;

int gsofDataIndex ;

Function: GetU32

/**/

unsigned long getU32(unsigned char * * ppData)

/**/

// Used by the decoding routines to grab 4 bytes and pack them into

// a U32. Fed ppData which is a pointer to a pointer to the start of

// the data bytes. The pointer variable referenced by ppData is moved

// beyond the four bytes.

// This is designed to work on little-endian processors (Like Pentiums).

// Effectively that means we reverse the order of the bytes.

// This would need to be rewritten to work on big-endian PowerPCs.

{

unsigned long retValue ;

unsigned char * pBytes ;

pBytes = (unsigned char *)(&retValue) + 3 ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes = *(*ppData)++ ;

return retValue ;

} /* end of getU32() */

BD940/BD99x Integrator Guide | 51

9 GSOF Message Parsing and Decoding

Function: GetFloat

/**/

float getFloat(unsigned char * * ppData)

/**/

// Used by the decoding routines to grab 4 bytes and pack them into

// a Float. Fed ppData which is a pointer to a pointer to the start of

// the data bytes. The pointer variable referenced by ppData is moved

// beyond the four bytes.

// This is designed to work on little-endian processors (Like Pentiums).

// Effectively that means we reverse the order of the bytes.

// This would need to be rewritten to work on big-endian PowerPCs.

{

float retValue ;

unsigned char * pBytes ;

pBytes = (unsigned char *)(&retValue) + 3 ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes = *(*ppData)++ ;

return retValue ;

} /* end of getFloat() */

BD940/BD99x Integrator Guide | 52

9 GSOF Message Parsing and Decoding

Function: GetDouble

/**/

double getDouble(unsigned char * * ppData)

/**/

// Used by the decoding routines to grab 8 bytes and pack them into

// a Double. Fed ppData which is a pointer to a pointer to the start of

// the data bytes. The pointer variable referenced by ppData is moved

// beyond the four bytes.

// This is designed to work on little-endian processors (Like Pentiums).

// Effectively that means we reverse the order of the bytes.

// This would need to be rewritten to work on big-endian PowerPCs.

{

double retValue ;

unsigned char * pBytes ;

pBytes = (unsigned char *)(&retValue) + 7 ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes-- = *(*ppData)++ ;

*pBytes = *(*ppData)++ ;

return retValue ;

} /* end of getDouble() */

BD940/BD99x Integrator Guide | 53

9 GSOF Message Parsing and Decoding

Function: GetU16

/**/

unsigned short getU16(unsigned char * * ppData)

/**/

// Used by the decoding routines to grab 2 bytes and pack them into

// a U16. Fed ppData which is a pointer to a pointer to the start of

// the data bytes. The pointer variable referenced by ppData is moved

// beyond the four bytes.

// This is designed to work on little-endian processors (Like Pentiums).

// Effectively that means we reverse the order of the bytes.

// This would need to be rewritten to work on big-endian PowerPCs.

{

unsigned short retValue ;

unsigned char * pBytes ;

pBytes = (unsigned char *)(&retValue) + 1 ;

*pBytes-- = *(*ppData)++ ;

*pBytes = *(*ppData)++ ;

return retValue ;

} /* end of getU16() */

/***

* The next section contains routines which are parsers for individual

* GSOF records. They are all passed a length (which is listed but

* usually not used) and a pointer to the data bytes that make up the

* record.

***/

BD940/BD99x Integrator Guide | 54

9 GSOF Message Parsing and Decoding

Position Time

/**/

void processPositionTime(int length, unsigned char *pData)

/**/

{

unsigned long msecs ;

unsigned short weekNumber ;

int nSVs ;

int flags1 ;

int flags2 ;

int initNumber ;

printf(" GsofType:1 - PositionTime len:%d\n", length) ;

msecs = getU32(&pData) ;

weekNumber = getU16(&pData) ;

nSVs = *pData++ ;

flags1 = *pData++ ;

flags2 = *pData++ ;

initNumber = *pData++ ;

printf(" Milliseconds:%ld Week:%d #Svs:%d "

"flags:%02X:%02X init:%d\n",

msecs,

weekNumber,

nSVs,

flags1,

flags2,

initNumber

) ;

} /* end of processPositionTime() */

BD940/BD99x Integrator Guide | 55

9 GSOF Message Parsing and Decoding

Latitude, Longitude and Height

/**/

void processLatLonHeight(int length, unsigned char *pData)

/**/

{

double lat, lon, height ;

printf(" GsofType:2 - LatLongHeight len:%d\n", length) ;

lat = getDouble(&pData) * 180.0 / PI ;

lon = getDouble(&pData) * 180.0 / PI ;

height = getDouble(&pData) ;

printf(" Lat:%.7f Lon:%.7f Height:%.3f\n",

lat,

lon,

height

) ;

} /* end of processLatLonHeight() */

Earth-Centered, Earth-Fixed Position

/**/

void processECEF(int length, unsigned char *pData)

/**/

{

double X, Y, Z ;

printf(" GsofType:3 - ECEF len:%d\n", length) ;

X = getDouble(&pData) ;

Y = getDouble(&pData) ;

Z = getDouble(&pData) ;

printf(" X:%.3f Y:%.3f Z:%.3f\n", X, Y, Z) ;

} /* end of processECEF() */

BD940/BD99x Integrator Guide | 56

9 GSOF Message Parsing and Decoding

Earth-Centered, Earth-Fixed Delta Position

/**/

void processEcefDelta(int length, unsigned char *pData)

/**/

{

double X, Y, Z ;

printf(" GsofType:6 - ECEF Delta len:%d\n", length) ;

X = getDouble(&pData) ;

Y = getDouble(&pData) ;

Z = getDouble(&pData) ;

printf(" X:%.3f Y:%.3f Z:%.3f\n", X, Y, Z) ;

} /* end of processEcefDelta() */

Tangent Plane Delta

/**/

void processTangentPlaneDelta(int length, unsigned char *pData)

/**/

{

double E, N, U ;

printf(" GsofType:7 - Tangent Plane Delta len:%d\n", length) ;

E = getDouble(&pData) ;

N = getDouble(&pData) ;

U = getDouble(&pData) ;

printf(" East:%.3f North:%.3f Up:%.3f\n", E, N, U) ;

} /* end of processTangentPlaneDelta() */

BD940/BD99x Integrator Guide | 57

9 GSOF Message Parsing and Decoding

Velocity Data

/**/

void processVelocityData(int length, unsigned char *pData)

/**/

{

int flags ;

float velocity ;

float heading ;

float vertical ;

printf(" GsofType:8 - Velocity Data len:%d\n", length) ;

flags = *pData++ ;

velocity = getFloat(&pData) ;

heading = getFloat(&pData) * 180.0 / PI ;

vertical = getFloat(&pData) ;

printf(" Flags:%02X velocity:%.3f heading:%.3f vertical:%.3f\n",

flags,

velocity,

heading,

vertical

) ;

} /* end of processVelocityData() */

Current UTC Time

/**/

void processUtcTime(int length, unsigned char *pData)

/**/

{

printf(" GsofType:16 - UTC Time Info len:%d\n", length) ;

U32 msecs = getU32(&pData) ;

U16 weekNumber = getU16(&pData) ;

S16 utcOffset = getU16(&pData) ;

BD940/BD99x Integrator Guide | 58

9 GSOF Message Parsing and Decoding

U8 flags = *pData++ ;

printf(" ms:%lu week:%u utcOff:%d flags:%02x\n",

msecs,

weekNumber,

utcOffset,

flags

) ;

} /* end of processUtcTime() */

PDOP Info

/**/

void processPdopInfo(int length, unsigned char *pData)

/**/

{

float pdop ;

float hdop ;

float vdop ;

float tdop ;

printf(" GsofType:9 - PDOP Info len:%d\n", length) ;

pdop = getFloat(&pData) ;

hdop = getFloat(&pData) ;

vdop = getFloat(&pData) ;

tdop = getFloat(&pData) ;

printf(" PDOP:%.1f HDOP:%.1f VDOP:%.1f TDOP:%.1f\n",

pdop,

hdop,

vdop,

tdop

) ;

} /* end of processPdopInfo() */

BD940/BD99x Integrator Guide | 59

9 GSOF Message Parsing and Decoding

SV Brief Info

/**/

void processBriefSVInfo(int length, unsigned char *pData)

/**/

{

int nSVs ;

int i ;

printf(" GsofType:13 - SV Brief Info len:%d\n", length) ;

nSVs = *pData++ ;

printf(" SvCount:%d\n", nSVs) ;

for (i = 0 ; i < nSVs ; ++i)

{

int prn ;

int flags1 ;

int flags2 ;

prn = *pData++ ;

flags1 = *pData++ ;

flags2 = *pData++ ;

printf(" Prn:%-2d flags:%02X:%02X\n", prn, flags1, flags2);

}

} /* end of processBriefSVInfo */

SV Brief Info (All Satellite Systems)

/**/

void processAllBriefSVInfo(int length, unsigned char *pData)

/**/

{

int nSVs ;

int i ;

printf(" GsofType:33 - All SV Brief Info len:%d\n", length) ;

nSVs = *pData++ ;

BD940/BD99x Integrator Guide | 60

9 GSOF Message Parsing and Decoding

printf(" SvCount:%d\n", nSVs) ;

for (i = 0 ; i < nSVs ; ++i)

{

int prn ;

int system ;

int flags1 ;

int flags2 ;

prn = *pData++ ;

system = *pData++;

flags1 = *pData++ ;

flags2 = *pData++ ;

printf(" %s SV:%-2d flags:%02X:%02X\n",

system == 0 ? "GPS"

: system == 1 ? "SBAS"

: system == 2 ? "GLONASS"

: system == 3 ? "GALILEO"

: system == 4 ? "QZSS"

: system == 5 ? "BEIDOU"

: system == 6 ? "RESERVED" : "RESERVED",

prn, flags1, flags2);

}

} /* end of processAllBriefSVInfo */

SV Detailed Info (All Satellite Systems)

/**/

void processAllDetailedSVInfo(int length, unsigned char *pData)

/**/

{

int nSVs ;

int i ;

printf(" GsofType:34 - All SV Detailed Info len:%d\n", length) ;

BD940/BD99x Integrator Guide | 61

9 GSOF Message Parsing and Decoding

nSVs = *pData++ ;

printf(" SvCount:%d\n", nSVs) ;

for (i = 0 ; i < nSVs ; ++i)

{

int prn ;

int system ;

int flags1 ;

int flags2 ;

int elevation ;

int azimuth ;

int snr[3];

prn = *pData++ ;

system = *pData++;

flags1 = *pData++ ;

flags2 = *pData++ ;

elevation = *pData++ ;

azimuth = getU16(&pData) ;

snr[0] = *pData++;

snr[1] = *pData++;

snr[2] = *pData++;

printf(" %s SV:%-2d flags:%02X:%02X\n"

" El:%2d Az:%3d\n"

" SNR %3s %5.2f\n"

" SNR %3s %5.2f\n"

" SNR %3s %5.2f\n",

system == 0 ? "GPS"

: system == 1 ? "SBAS"

: system == 2 ? "GLONASS"

: system == 3 ? "GALILEO"

: system == 4 ? "QZSS"

: system == 5 ? "BEIDOU"

BD940/BD99x Integrator Guide | 62

9 GSOF Message Parsing and Decoding

: system == 6 ? "RESERVED" : "RESERVED",

prn, flags1, flags2,

elevation, azimuth,

system == 3 ? "E1 " : "L1 ", (float)snr[0] / 4.0,

system == 3 ? "N/A " : "L2 ", (float)snr[1] / 4.0,

system == 3 ? "E5 "

: system == 2 ? "G1P" : "L5 ", (float)snr[2] / 4.0

);

}

} /* end of processAllDetailedSVInfo */

SV Detailed Info

/**/

void processSvDetailedInfo(int length, unsigned char *pData)

/**/

{

int nSVs ;

int i ;

printf(" GsofType:14 - SV Detailed Info len:%d\n", length) ;

nSVs = *pData++ ;

printf(" SvCount:%d\n", nSVs) ;

for (i = 0 ; i < nSVs ; ++i)

{

int prn ;

int flags1 ;

int flags2 ;

int elevation ;

int azimuth ;

int l1Snr ;

int l2Snr ;

prn = *pData++ ;

BD940/BD99x Integrator Guide | 63

9 GSOF Message Parsing and Decoding

flags1 = *pData++ ;

flags2 = *pData++ ;

elevation = *pData++ ;

azimuth = getU16(&pData) ;

l1Snr = *pData++ ;

l2Snr = *pData++ ;

printf(" Prn:%-2d flags:%02X:%02X elv:%-2d azm:%-3d "

"L1snr:%-5.2f L2snr:%-5.2f\n",

prn,

flags1,

flags2,

elevation,

azimuth,

((double)l1Snr) / 4.0 ,

((double)l2Snr) / 4.0

) ;

}

} /* end of processSvDetailedInfo() */

Attitude Info

/**/

void processAttitudeInfo(int length , unsigned char *pData)

/**/

{

double gpsTime ;

unsigned char flags ;

unsigned char nSVs ;

unsigned char mode ;

double pitch ;

double yaw ;

double roll ;

BD940/BD99x Integrator Guide | 64

9 GSOF Message Parsing and Decoding

double range ;

double pdop ;

printf(" GsofType:27 - AttitudeInfo len:%d\n",

length

) ;

gpsTime = (double)getU32(&pData) / 1000.0 ;

flags = *pData++ ;

nSVs = *pData++ ;

mode = *pData++ ;

++pData ; // reserved

pitch = getDouble(&pData) / PI * 180.0 ;

yaw = getDouble(&pData) / PI * 180.0 ;

roll = getDouble(&pData) / PI * 180.0 ;

range = getDouble(&pData) ;

pdop = (double)getU16(&pData) / 10.0 ;

printf(" Time:%.3f"

" flags:%02X"

" nSVs:%d"

" mode:%d\n"

" pitch:%.3f"

" yaw:%.3f"

" roll:%.3f"

" range:%.3f"

" pdop:%.1f"

"\n",

gpsTime,

flags,

nSVs,

mode,

pitch,

yaw,

BD940/BD99x Integrator Guide | 65

9 GSOF Message Parsing and Decoding

roll,

range,

pdop

) ;

// Detect if the extended record information is present

if (length > 42)

{

float pitch_var ;

float yaw_var ;

float roll_var ;

float pitch_yaw_covar ;

float pitch_roll_covar ;

float yaw_roll_covar ;

float range_var;

// The variances are in units of radians^2

pitch_var = getFloat(&pData) ;

yaw_var = getFloat(&pData) ;

roll_var = getFloat(&pData) ;

// The covariances are in units of radians^2

pitch_yaw_covar = getFloat(&pData) ;

pitch_roll_covar = getFloat(&pData) ;

yaw_roll_covar = getFloat(&pData) ;

// The range variance is in units of m^2

range_var = getFloat(&pData) ;printf(" variance (radians^2)"

" pitch:%.4e"

" yaw:%.4e"

" roll:%.4e"

"\n",

pitch_var,

yaw_var,

roll_var) ;

BD940/BD99x Integrator Guide | 66

9 GSOF Message Parsing and Decoding

printf(" covariance (radians^2)"

" pitch-yaw:%.4e"

" pitch-roll:%.4e"

" yaw-roll:%.4e"

"\n",

pitch_yaw_covar,

pitch_roll_covar,

yaw_roll_covar) ;

printf(" variance (m^2)"

" range: %.4e"

"\n",

range_var) ;

}

} /* end of processAttitudeInfo() */

L-Band Status Info

/**/

void processLbandStatus(int length , unsigned char *pData)

/**/

{

unsigned char name[5];

float freq;

unsigned short bit_rate;

float snr;

unsigned char hp_xp_subscribed_engine;

unsigned char hp_xp_library_mode;

unsigned char vbs_library_mode;

unsigned char beam_mode;

unsigned char omnistar_motion;

float horiz_prec_thresh;

float vert_prec_thresh;

BD940/BD99x Integrator Guide | 67

9 GSOF Message Parsing and Decoding

unsigned char nmea_encryption;

float iq_ratio;

float est_ber;

unsigned long total_uw;

unsigned long total_bad_uw;

unsigned long total_bad_uw_bits;

unsigned long total_viterbi;

unsigned long total_bad_viterbi;

unsigned long total_bad_messages;

unsigned char meas_freq_is_valid = -1;

double meas_freq = 0.0;

printf(" GsofType:40 - LBAND status len:%d\n",

length

) ;

memcpy(name, pData, 5);

pData += 5;

freq = getFloat(&pData);

bit_rate = getU16(&pData);

snr = getFloat(&pData);

hp_xp_subscribed_engine = *pData++;

hp_xp_library_mode = *pData++;

vbs_library_mode = *pData++;

beam_mode = *pData++;

omnistar_motion = *pData++;

horiz_prec_thresh = getFloat(&pData);

vert_prec_thresh = getFloat(&pData);

nmea_encryption = *pData++;

iq_ratio = getFloat(&pData);

est_ber = getFloat(&pData);

total_uw = getU32(&pData);

total_bad_uw = getU32(&pData);

BD940/BD99x Integrator Guide | 68

9 GSOF Message Parsing and Decoding

total_bad_uw_bits = getU32(&pData);

total_viterbi = getU32(&pData);

total_bad_viterbi = getU32(&pData);

total_bad_messages = getU32(&pData);

if(length > 61)

{

meas_freq_is_valid = *pData++;

meas_freq = getDouble(&pData);

}

printf(" Name:%s"

" Freq:%g"

" bit rate:%d"

" SNR:%g"

"\n"

" HP/XP engine:%d"

" HP/XP mode:%d"

" VBS mode:%d"

"\n"

" Beam mode:%d"

" Omnistar Motion:%d"

"\n"

" Horiz prec. thresh.:%g"

" Vert prec. thresh.:%g"

"\n"

" NMEA encryp.:%d"

" I/Q ratio:%g"

" Estimated BER:%g"

"\n"

" Total unique words(UW):%d"

" Bad UW:%d"

" Bad UW bits:%d"

BD940/BD99x Integrator Guide | 69

9 GSOF Message Parsing and Decoding

"\n"

" Total Viterbi:%d"

" Corrected Viterbi:%d"

" Bad messages:%d"

"\n"

" Meas freq valid?:%d"

" Meas freq:%.3f"

"\n"

,

name,

freq,

bit_rate,

snr,

hp_xp_subscribed_engine,

hp_xp_library_mode,

vbs_library_mode,

beam_mode,

omnistar_motion,

horiz_prec_thresh,

vert_prec_thresh,

nmea_encryption,

iq_ratio,

est_ber,

total_uw,

total_bad_uw,

total_bad_uw_bits,

total_viterbi,

total_bad_viterbi,

total_bad_messages,

meas_freq_is_valid,

meas_freq

BD940/BD99x Integrator Guide | 70

9 GSOF Message Parsing and Decoding

) ;

} /* end of processLbandStatus() */

Function: Process GSOF Data

/**/

void processGsofData(void)

/**/

/* Called when a complete set of GSOF packets has been received.

* The data bytes collected are available in global gsofData and the

* number of those bytes is in gsofDataIndex.

*

* This routine just goes through the bytes and parses the sub-type

* records. Each of those has a Type and a Length. If the type is

* one of the special types we know about, we call the proper parser.

* Otherwise we just hex-dump the record.

*/

{

int i ;

int gsofType ;

int gsofLength ;

unsigned char * pData ;

printf("\nGSOF Records\n") ;

pData = gsofData ;

while (pData < gsofData + gsofDataIndex)

{

gsofType = *pData++ ;

gsofLength = *pData++ ;

// If the type is one that we know about, then call the specific

// parser for that type.

if (gsofType == 1)

{

BD940/BD99x Integrator Guide | 71

9 GSOF Message Parsing and Decoding

processPositionTime(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 2)

{

processLatLonHeight(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 3)

{

processECEF(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 4)

{

processLocalDatum(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 8)

{

processVelocityData(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 9)

{

processPdopInfo(gsofLength, pData) ;

BD940/BD99x Integrator Guide | 72

9 GSOF Message Parsing and Decoding

pData += gsofLength ;

}

else

if (gsofType == 13)

{

processBriefSVInfo(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 16)

{

processUtcTime(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 33)

{

processAllBriefSVInfo(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 34)

{

processAllDetailedSVInfo(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 14)

{

processSvDetailedInfo(gsofLength, pData) ;

pData += gsofLength ;

BD940/BD99x Integrator Guide | 73

9 GSOF Message Parsing and Decoding

}

else

if (gsofType == 27)

{

processAttitudeInfo(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 26)

{

processPositionTimeUtc(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 6)

{

processEcefDelta(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 7)

{

processTangentPlaneDelta(gsofLength, pData) ;

pData += gsofLength ;

}

else

if (gsofType == 40)

{

processLbandStatus(gsofLength, pData) ;

pData += gsofLength ;

}

BD940/BD99x Integrator Guide | 74

9 GSOF Message Parsing and Decoding

else

{

// Not a type we know about. Hex dump the bytes and move on.

printf(" GsofType:%d len:%d\n ",

gsofType,

gsofLength

) ;

for (i = 0 ; i < gsofLength ; ++i)

{

printf("%02X%s",

*pData++,

i % 16 == 15 ? "\n " : " "

) ;

}

// Terminate the last line if needed.

if (gsofLength %16 != 0)

printf("\n") ;

}

printf("\n") ;

}

printf("\n") ;

} /* end of processGsofData() */

Function: Post GSOF Data

/**/

void postGsofData(unsigned char * pData, int length)

/**/

// Called whenever we get a new Trimcomm GSOF packet (type 0x40).

// These all contain a portion (or all) of a complete GSOF packet.

// Each portion contains a Transmission Number, an incrementing value

// linking related portions.

BD940/BD99x Integrator Guide | 75

9 GSOF Message Parsing and Decoding

// Each portion contains a Page Index, 0..N, which increments for each

// portion in the full GSOF packet.

// Each portion contains a Max Page Index, N, which is the same for all

// portions.

//

// Each portion's data is appended to the global buffer, gsofData[].

// The next available index in that buffer is always gsofDataIndex.

// When we receive a portion with Page Index == 0, that signals the

// beginning of a new GSOF packet and we restart the gsofDataIndex at

// zero.

//

// When we receive a portion where Page Index == Max Page Index, then

// we have received the complete GSOF packet and can decode it.

{

int gsofTransmissionNumber ;

int gsofPageIndex ;

int gsofMaxPageIndex ;

int i ;

gsofTransmissionNumber = *pData++ ;

gsofPageIndex = *pData++ ;

gsofMaxPageIndex = *pData++ ;

printf(" GSOF packet: Trans#:%d Page:%d MaxPage:%d\n",

gsofTransmissionNumber,

gsofPageIndex,

gsofMaxPageIndex

) ;

// If this is the first portion, restart the buffering system.

if (gsofPageIndex == 0)

gsofDataIndex = 0 ;

// Transfer the data bytes in this portion to the global buffer.

for (i = 3 ; i < length ; ++i)

BD940/BD99x Integrator Guide | 76

9 GSOF Message Parsing and Decoding

gsofData[gsofDataIndex++] = *pData++ ;

// If this is the last portion in a packet, process the whole packet.

if (gsofPageIndex == gsofMaxPageIndex)

processGsofData() ;

} /* end of postGsofData() */

Function: Get Character (gc)

/**/

int gc(void)

/**/

/* This is a getchar() wrapper. It just returns the characters

* from standard input. If it detects end of file, it aborts

* the entire program.

*

* NOTE: This function is not optimal because if the program is in the middle of a packet
there is

* no indication. This is a simple parsing application

*/

{

int c ;

c = getchar() ;

if (c != EOF)

return c ;

printf("END OF FILE \n") ;

_exit(0) ;

} /* end of gc() */

Function: Main

/**/

int main(int argn, char **argc)

/**/

/* Main entry point. Looks for Trimcomm packets. When we find one with

BD940/BD99x Integrator Guide | 77

9 GSOF Message Parsing and Decoding

* type 0x40, its bytes are extracted and passed on to the GSOF

* handler.

*/

{

int tcStx ;

int tcStat ;

int tcType ;

int tcLength ;

int tcCsum ;

int tcEtx ;

unsigned char tcData[256] ;

int i ;

printf("GSOF Parser\n") ;

while (1)

{

tcStx = gc() ;

if (tcStx == 0x02)

{

tcStat = gc() ;

tcType = gc() ;

tcLength = gc() ;

for (i = 0 ; i < tcLength ; ++i)

tcData[i] = gc() ;

tcCsum = gc() ;

tcEtx = gc() ;

printf("STX:%02Xh Stat:%02Xh Type:%02Xh "

"Len:%d CS:%02Xh ETX:%02Xh\n",

tcStx,

tcStat,

tcType,

tcLength,

BD940/BD99x Integrator Guide | 78

9 GSOF Message Parsing and Decoding

tcCsum,

tcEtx

) ;

if (tcType == 0x40)

postGsofData(tcData, tcLength) ;

}

else

printf("Skipping %02X\n", tcStx) ;

}

return 0 ;

} // main

BD940/BD99x Integrator Guide | 79

	Contents
	1 Power Requirements and Circuitry
	BD940/BD940-INS
	BD990/BD992/BD992-INS
	Power switch and reset
	Power switch

	Reset switch
	BD940 evaluation board
	Power input circuit

	BD940-INS evaluation board
	Power supply circuit

	BD990/BD992/BD992-INS evaluation board
	Power supply circuit

	Antenna power output
	Power output specification
	Short-circuit protection

	2 Ethernet
	Isolation transformer selection
	Ethernet design using RJ-45 with integrated magnetics
	RJ-45 drawing
	JX10-0006NL schematic

	Electrical characteristics
	Ethernet design using discrete components
	Ethernet schematic

	Ethernet routing
	BD940-INS/BD99X Ethernet design considerations

	Evaluation board Ethernet schematics
	BD940 evaluation board
	BD940-INS evaluation board
	BD99X evaluation board

	3 Serial Port
	BD940 evaluation board
	BD940-INS evaluation board
	BD99x evaluation board

	4 USB
	USB OTG reference design
	USB host-only reference design
	USB device-only reference design
	BD940 evaluation board
	BD940-INS evaluation board
	BD99x evaluation board

	5 CAN
	BD940
	BD940-INS evaluation board CAN port
	BD99X evaluation board CAN port

	6 LED Control Lines
	7 Event Input for the BD9xx Using the Evaluation Board
	Event
	Event schematics of the BD9xx evaluation PCB
	PPS output and event inputs BD940
	PPS output and event inputs BD40-INS
	PPS output and event inputs BD990/BD992/BD992-INS

	Event (0) 1PPS Input example
	Hardware to generate and measure the input signal
	Issues of conditioning the input voltage signal
	Oscilloscope Signal 1 and Signal 2
	Enabling Event (0) 1 in the receiver firmware using the web interface
	Logging Event In using the RT17/RT27 protocol
	Verifying the Event In data using the RT17/RT27 protocol

	8 1PPS and ASCII Time Tag
	ASCII time tag

	9 GSOF Message Parsing and Decoding
	Source code description
	Header, defines, types, and routines

